
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 297 (2006) 365–381

www.elsevier.com/locate/jsvi
Dynamic analyses of a flexible quick-return mechanism by the
fixed and variable finite-difference grids

Jih-Lian Haa,�, Jer-Rong Changb, Rong-Fong Fungc

aDepartment of Mechanical Engineering, Far East College, 49 Chung-Hua Road, Shin-Shi, Tainan 744, Taiwan, ROC
bDepartment of Aircraft Engineering, Air Force Institute of Technology, 1 Jyulun Road, Gang-Shan, Kaohsiung 820, Taiwan, ROC

cDepartment of Mechanical and Automation Engineering, National Kaohsiung First University of Science and Technology, 1 University Road,

Yenchau, Kaohsiung 824, Taiwan, ROC

Received 2 December 2004; received in revised form 7 March 2006; accepted 10 April 2006

Available online 16 June 2006
Abstract

The finite difference method (FDM) with fixed and variable grids is proposed to approximate the numerical solutions of

a flexible quick-return mechanism. In the dynamic analysis and simulation, the flexible rod is divided into two regions.

Each region with time-dependent length is modeled by Euler-beam theory. Sufficient stability and convergence conditions

are established for these finite difference schemes. It is found that for the fixed-grid method, numerical divergence occurs

when the moving boundary moves across any of the neighboring nodes. The possibility of break down can be avoided via

the variable-grid method, in which a coordinate transformation is employed to fix the moving boundary. Numerical results

are discussed and provided to justify the stability and convergence.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The traditional approach to dynamic analysis of mechanisms and machines usually makes the assumption
that the systems are composed of rigid bodies. However, when a mechanism operates at a high-speed
condition, the rigid-body assumption is no longer valid and the links should be considered flexible. In the
quick-return mechanism, since the translating/rotating joint moves reciprocally along the flexible rod, the rod
is divided into two regions with time-dependent length. Many numerical methods, such as the finite-element
method (FEM) and Galerkin’s method, have been used to solve the problem with time-dependent domain.

The brief review of the numerical analysis about the system with time-dependent domain is as follows. First,
for systems with time-dependent domain by Galerkin’s method, Dwivedi [1] presented approximate
expressions for the angular displacement, velocity and acceleration of the mechanism. The quick-return
mechanism was investigated by Beale and Scott [2,3] on the deflection and stability, whereas the rod was
considered as an Euler–Bernoulli beam. Spatial dependence was eliminated by using Galerkin’s method with
time-dependent pinned–pinned overhanging beam modes. Okuyiga and Ray [4] solved numerically the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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displacement of a slightly compressible liquid for the 1D case. Fung and Cheng [5] approximated a string/
slider system by using Galerkin’s method with time-dependent basis functions. Lee [6] presented the dynamics
of a flexible rod of a quick-return mechanism. In general, Galerkin’s approach is computationally too
intensive due to the time-dependent boundary and its complex mode shape.

Second, for systems with time-dependent domain by the FEM, many works on the dynamics and stability of
a flexible rod in a quick-return mechanism were based on the FEM. For examples, Bahgat and Willmert [7],
Song and Haug [8] and Yang and Sadler [9] employed the FEM in their works to investigate the dynamics of
the flexible planar mechanisms. Fung and Lee [10] investigated the stability of a quick-return mechanism with
time-dependent coefficients. The flexible multibody machine tool mechanism subjected to constant and
chattering cutting forces was analyzed by Shabana and Thomas [11]. Fung and Chen [12] simulated the flexible
rod of a quick-return mechanism driven by a PM synchronous servomotor by the FEM. A variable-domain
beam finite element with the size being a prescribed function of time was formulated by Stylianou and
Tabarrok [13]. For a translating and rotating beam, a transition finite element with variable stiffness
introduced at the interface of the joint hub was addressed in Refs. [14,15]. Generally speaking, the advantage
of FEM is its ability to handle complex geometry; however, it requires more CPU time and is less suitable to
vectorization and parallel computation than the finite difference method (FDM) [16,17].

Finally, are systems with time-dependent domain by the FDM, which is the most popular choice for
numerical solutions in the moving boundary problems. Kharab [18] demonstrated the use of a spreadsheet
program that simulates the location of a moving boundary of the one-phase Stefan problem. By using
the FDM, the idea of a coordinate transformation to fix a moving boundary was used numerically [19,20].
Most studies of the system with time-dependent domain solved numerically by the FDM focused on the
solidification/melting and Stefan problems. To the authors’ knowledge, there are very few papers investigating
the flexible planar mechanisms by use of the FDM.

The main objective of this paper focuses on the application of the FDM to dynamic analysis of the flexible
quick-return mechanism. The FDM with the fixed- and variable-grid methods is employed and the stability
and convergence conditions for these finite difference schemes are established. The variable-grid method based
on coordinate transformation, which transforms the time-varying domain into a constant one, is found to be
the most suitable for the quick-return mechanism with moving boundary.
2. Formulations of physical model

The undeformed configuration of the flexible quick-return mechanism is shown in Fig. 1. The mechanism
consists of the rigid crank AJ with length r, the rigid rod BC with length D, the flexible rod OB with length L,
and the slider C with mass mc. Other symbols are as follows: F, external force acting on the slider; y, crank
angle; f, angle between the Y-axis and the rigid-body reference axis of the flexible rod OB; b, angle between
the X-axis and the rigid rod BC.

The deformed configuration of the quick-return mechanism is shown in Fig. 2. ei and ej are the unit vectors
of the rotating frame Oxy which rotates with an angular speed _f. i and j are the unit vectors of the fixed frame
OXY. x1(t) is the current position of the translating/rotating joint. The frictional forces at the translating/
rotating joint and slider C are neglected. The dimension of the slider J compared with the flexible rod is small
and thus for simplicity is considered to be massless and treated as a point [10,12]. The flexible quick-return
mechanism considered in this paper, which includes the rigid rod BC and slider C, is different from those in
Fung and Lee [10], Lee [6] and Beale and Scott [2] where the above parts were not considered.

For the sake of convenience the following differential notations are used: ð Þ0 ¼ qð Þ=qx and ð�Þ ¼ qð Þ=qt. If
the slenderness ratio is very small, the shear deformation can be neglected in comparison with the flexural
deformation, and Euler-beam theory can be used to describe the motion of the flexible rod. The displacement
field of any point P of the flexible rod before deformation is

u1ðx; y; tÞ ¼ �yv0ðx; tÞ,

u2ðx; y; tÞ ¼ vðx; tÞ, ð1Þ

where v represents the transverse displacement of the flexible rod.
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Fig. 1. Quick-return mechanism before deformation.
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Fig. 2. Deformed quick-return mechanism with a flexible connecting rod.
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In this paper, the rotating coordinate system Oxy fixed on the flexible connecting rod is selected to be the
reference coordinate. Fig. 2 shows the flexible rod undergoing gross motion and elastic deformation. The
deformed position vector of an arbitrary point P is

R x; y; tð Þ ¼ xþ u1ð Þei þ u2ej. (2)

By differentiating Eq. (2) with respect to time t, the absolute velocity is

Rt x; y; tð Þ ¼ �y_v0 � v _f
� �

ei þ ðx� yv0Þ _fþ _v
� �

ej. (3)
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The total kinetic energy is the sum of the flexible rod OB, rigid rod BC, crank AJ and slider C. The kinetic
energy of the flexible rod OB is expressed as the sum of two regions of integration:

TOB ¼
1

2

Z x�
1
ðtÞ

0

þ

Z L

xþ
1

 !
rA v2 _f

2
þ x _fþ _v
� �2n on o

dx. (4)

If the mass of the slider J is considered, the associated kinetic energy has to be added to the formulation. It
is neglected in this study. The kinetic energy of crank with mass mAJ and moment of inertia IAJ is

TAJ ¼
1

2
IAJ

_y
2
¼

1

6
mAJr2 _y

2
. (5)

The kinetic energy of the rigid rod BC with mass mBC and moment of inertia IBC is

TBC ¼
1

2
mBC

_X
2

BC þmBC
_Y
2

BC þ IBC
_b
2

� �
, (6)

where

X BC ¼ �L sinfþ
D

2
cosb� uL sinf� vL cosf,

Y BC ¼ �
D

2
sinbþ uL cosf� vL sinf,

IBC ¼
1

12
mBCD2.

The kinetic energy of the slider C with mass mc is

TC ¼
1

2
mC

_X
2

C , (7)

where X C ¼ D cosb� L sinf� vL vosf, and vL ¼ vðL; tÞð Þ denotes the displacement at the end of the
flexible rod.

The Lagrange strains are

exx ¼ �yv00; eyy ¼ exy ¼ 0, (8)

where the high order terms 1
2
v02 and yv0v00 are neglected. The strain energy U of the system resulting from the

bending deformation of the flexible rod is also expressed as the sum of two spatial integrals:

U ¼
1

2

Z
V

sijeij dV ,

¼
1

2

Z x�
1
ðtÞ

0

þ

Z L

xþ
1

 !
EIv00

2
n o

dx. ð9Þ

The virtual work done by the external force F applied on the slider is

dW ¼ FdX C

¼ �F cosfdvL. ð10Þ

Hamilton’s principle for the flexible quick-return mechanism isZ t2

t1

dT total � dU þ dWð Þdt ¼ 0, (11)

where T total ¼ TBO þ TBC þ TAJ þ Tc. By substituting Eqs. (4)–(10) into Eq. (11) and taking variations, one
obtains the governing equation of the transverse deflection for flexible rod:

rA €vþ x €f� v _f
2

� �
þ EIv0000 ¼ 0; 0oxox�1 ; xþ1 oxoL (12a, b)
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and the boundary conditions are

vð0; tÞ ¼ 0; v00ð0; tÞ ¼ 0; vðx�1 ; tÞ ¼ 0; vðxþ1 ; tÞ ¼ 0, (13a2d)

v0ðx�1 ; tÞ ¼ v0ðxþ1 ; tÞ; v00ðx�1 ; tÞ ¼ v00ðxþ1 ; tÞ; v00ðL; tÞ ¼ 0, (13e2g)

mBC ½L _f
2
cosf sinfþ vL

_f
2
�

1

2
D _b

2
cosðfþ bÞ �

1

2
D €b sinðfþ bÞ

� €vL � L €fcos2f� þmC ½L _f
2
sinf cosf�D _b

2
cos b cosf

�D €b sin b cosf� L €fcos2fþ vL
_f
2
cos2fþ vL

€f sinf cosf

þ 3_vL
_f cosf sinf� €vLcos

2f� þ EIv000L � F cosf ¼ 0. ð13hÞ

It is seen that the rigid-body motion and flexural vibration are coupled. The part of the flexible rod inside
the rigid slider is treated as only one point. The translating/rotating joint is treated as a knife edge so that it
can be assumed that the displacement, slope and curvature of the flexible rod are continuous across the
translating/rotating joint, and these continuous conditions are seen in boundary conditions (13c–f). The
boundary condition (13h) represents the force equilibrium at the end point of the flexible rod.

The kinematics of the mechanism is assumed that the crank is driven by a servomotor at a constant angular
speed _y. Thus, the mechanism is of one degree-of-freedom (dof). The functions f, x1 and their derivatives can
be expressed in terms of the known parameters y and _y as

f ¼ sin�1
r sin y

ðr2 þH2 þ 2rH cos yÞ1=2

 !
; _f ¼

r_y cosðy� fÞ
x1

,

€f ¼
rH _y

2
ðr2 �H2Þ sin y

x4
1

, ð14a2cÞ

x1 ¼ ðr
2 þH2 þ 2rH cos yÞ1=2; _x1 ¼

�rH _y sin y
x1

,

€x1 ¼
�x1rH _y

2
cos yþ _x1rH _y sin y

x2
1

. ð15a2cÞ

From the geometric relationships, the angle b and its derivatives can be expressed in terms of f as

b ¼ sin�1
Lð1� cosfÞ

D

� �
; _b ¼

L _f sinf
D cos b

,

€b ¼
L €f sinfþ Lð _fÞ2 cosfþDð _bÞ2 sin b

D cos b
. ð16a2cÞ

It is seen that the functions f, x1, b and their time derivatives can be obtained, once the driving angle y and
angular speed _y are known.
3. Finite difference schemes

The technique of finite difference method for the flexible quick-return mechanism with a translating/
rotating joint will be introduced in this section. Previous works on the numerical results of a flexible rod of the
quick-return mechanism are based on the FEM [10,12] and Galerkin’s approximation [2,3] with time-
dependent basis function. Here, two kinds of finite difference schemes associated with the fixed- and variable-
grid methods are addressed for simulating the dynamic behavior of the system.
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3.1. Fixed-grid method

In order to approximate the partial differential equations by using the finite difference equations, the total
length L is divided into Nf subdivisions. Let h and k be, respectively, the space and time discretization mesh
sizes and let v

j
i denote the value of v at the ith node and jth time. A major difficulty arises due to the presence of

unequal space interval near the moving boundary by using the FDM. Thus, the treatment of the nodes near
the moving boundary is different from the other nodes. At any time jk, the most general case of the moving
boundary x1(t) will usually be located between two neighboring grid points, denoted irh and ðir þ 1Þh, as
shown in Fig. 3. This will be approximated by using the modified finite difference scheme, which incorporates
unequal space interval near the moving boundary.

Lagrange interpolation is employed to solve the transverse displacements at the nodes near the moving
boundary. Three-point formulae [17] for the general function f(x), which has known values f(a0), f(a1) and
f(a2) at the three points a0, a1 and a2 respectively, is established as

f ðxÞ ¼
X2
i¼0

ziðxÞf ðaiÞ, (17)

where

ziðxÞ ¼
GðxÞ

ðx� aiÞG0ðaiÞ
; GðxÞ ¼ ðx� a0Þðx� a1Þðx� a2Þ.

Then the derivative terms of f(x) can be easily derived. Fig. 3 shows the moving boundary at time jk, and at
a fractional distance pjh between the grid line irh and ðir þ 1Þh. In region 1, the points a0, a1 and a2
are identified with the grid lines, ðir � 1Þh, irh and the moving boundary itself. The functions f(a0), f(a1) and
f(a2) correspond to v

j
ir�1

, v
j
ir
and v

j
B at the boundary, respectively. The treatments for the region 2 are similar

with the region 1. The transverse displacements at the points near the moving boundary are detailed in
Appendix A.

In summary, this method proceeds as follows:
Step 1: Given pj and v

j
i to calculate v

jþ1
i ; i ¼ 0; 1; . . . ; ir � 2 and ir þ 3; . . .Nf .

Step 2: Calculate v
jþ1
ir�1

; v
jþ1
ir
; v

jþ1
irþ1

, and v
jþ1
irþ2

from Appendix A.
Step 3: Calculate pj+1.
Step 4: Repeat steps (1)–(3) until the last time.
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3.2. Variable-grid method

Several techniques [19,20] of modifying the grid have been proposed in the variable-grid network, all with
the intent to avoid the increased complication and the loss of accuracy associated with unequal intervals near
the moving boundary. Since the translating/rotating joint moves reciprocally along the flexible rod, there is a
time-dependent boundary involved. By using the variable-grid method, the original grid system (x,t) is
transformed into a new system (x,t), which is orthogonal and is shown in Fig. 4. The total length L of the
flexible rod is divided into two regions. The total number of space intervals between x ¼ 0 and x ¼ L is
constant and equals to Nv for the finite difference analysis. Regions 1 and 2 have n and m subdivisions,
respectively. Thus, the total number of subdivisions Nv equals mþ n.

In region 1, 0pxpx�1 ðtÞ, the moving boundary can be fixed by the coordinate transformation

x1 ¼
x

x1ðtÞ
, (18)

so that the moving boundary x ¼ x1 becomes x1 ¼ 1. The coordinate transformation for region 2 is

x2 ¼
x� x1ðtÞ

L� x1ðtÞ
, (19)

so that the moving boundary x ¼ x1 becomes x2 ¼ 0 and the end x ¼ L becomes x2 ¼ 1. Thus, the space
intervals h1 ¼ 1/n and h2 ¼ 1/m in the regions 1 and 2, respectively, are proceeded in each time step. The
moving boundary is always on the (n+1)th grid line in region 1 and the first grid line in region 2. A coordinate-
transformation scheme is detailed in Appendix B for Euler-beam theory. It should be noted that the position
x1, speed _x1 and acceleration €x1 of the moving boundary appear as coefficients in the transformed equations.
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4. Stability and convergence analyses

The governing equation of the quick-return mechanism is a properly posed initial-value problem and
the finite difference approximation satisfies the consistency condition. With the help of the lax equi-
valence theorem [21], stability analysis is necessary and sufficient for convergence in the finite difference
scheme.
4.1. Fixed-grid method

Neglecting boundary conditions (13a–h), Von-Neumann stability analysis [21,22] is employed in the fixed-
grid method. Denoting the actual machine printout as ~vj

i , the round-off error is

e
j
i ¼ v

j
i � ~v

j
i, (20)

According to Eq. (12), both v
j
i and ~vj

i satisfy

v
jþ1
i ¼ 2v

j
i � v

j�1
i � k2xi

€fj þ k2v
j
i
_f
2

j �
a2k2

h4
v

j
iþ2 � 4v

j
iþ1 þ 6v

j
i � 4v

j
i�1 þ v

j
i�2

� �
, (21a)

~vjþ1
i ¼ 2~vj

i � ~v
j�1
i � k2xi

€fj þ k2 ~vj
i
_f
2

j �
a2k2

h4
~vj
iþ2 � 4~vj

iþ1 þ 6~vj
i � 4~vj

i�1 þ ~v
j
i�2

� �
, (21b)

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
. And, subtracting, one can find that e

j
i satisfies

e
jþ1
i ¼ 2e

j
i � e

j�1
i þ k2e

j
i
_f
2

j �
a2k2

h4
e

j
iþ2 � 4e

j
iþ1 þ 6e

j
i � 4e

j
i�1 þ e

j
i�2

� �
. (22)

Let d
j
i ¼ e

j�1
i , the above three-level formula can be reduced to a two-level system as

e
jþ1
i ¼ 2e

j
i � d

j
i þ k2e

j
i
_f
2

j �
a2k2

h4
e

j
iþ2 � 4e

j
iþ1 þ 6e

j
i � 4e

j
i�1 þ e

j
i�2

� �
,

d
jþ1
i ¼ e

j
i. ð23a; bÞ

Using a finite Fourier representation of the error e
j
i and d

j
i as

e
j
i ¼

XNf

m¼0

EmðjÞe
impx=L ¼

XNf

m¼0

EmðjÞe
impi=Nf , (24a)

d
j
i ¼

XNf

m¼0

DmðjÞe
impx=L ¼

XNf

m¼0

DmðjÞe
impi=Nf (24b)

where the symbol i means
ffiffiffiffiffiffiffi
�1
p

. Substituting Eq. (24) into Eq. (23) and rearranging them to be the matrix
form, we get:

Emðj þ 1Þ

Dmðj þ 1Þ

( )
¼

C �1

1 0


 �
EmðjÞ

DmðjÞ

( )
, (25)

where C ¼ 2þ _f
2

j k2
� 16a2k2=h4sin4pm=2Nf . Since h and k are very small, the second term in C is much small

than O(1) and is omitted to simplify the following analysis. The eigenvalue l of the 2� 2 matrix in Eq. (25) can
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be derived to satisfy the following equation

l2 � 2�
16a2k2

h4
sin4

pm

2Nf

� �
lþ 1 ¼ 0. (26)

If any of these eigenvalues are outside the unit circle for any x in the range 0pxpL, then the scheme is
unstable. One wishes the roots of Eq. (26) to lie in or on the unit circle, hence one must have

16a2k2

h4
sin4

pm

2Nf

p4. (27)

Majorizing the left side of this inequality by replacing sine function by 1, one obtain a simple sufficient
stability condition for the finite difference scheme as

mf o0:5, (28)

where mf ¼ ak=h2. Furthermore, a numerical divergence occurs when the moving boundary moves across any
of the neighboring nodes. Since the value of pj, as shown in Fig. 3, may be very close to be zero or unity, some
equations in Appendix A become numerically divergent. The moving boundary needs to be located between
two neighboring grind nodes, say node ir and node ir þ 1. This situation depends on the geometry size of the
mechanism. According to Fig. 1, the moving boundary position x1 is located in the range H � rpx1pH þ r

where the maximum and minimum values occur when the crank coincides with the driven rod. To have a
convergent scheme, the subdivision number Nf must satisfy the following geometry constraints:

Nf ðH þ rÞ

L
� 1oiro

Nf ðH � rÞ

L
. (29)

It is noted that this equation is irrelevant to the time step k.

4.2. Variable-grid method

Following the process of previous subsection to apply Von-Neumann stability analysis, for region 1, the
round-off errors e

j
i and d

j
i can be derived from the finite difference equation (B.1) as in Appendix B to get

e
jþ1
i ¼ 2e

j
i � d

j
i þ

x1j _x1jk

x2
1jh

e
j
iþ1 � e

j
i�1 � d

j
iþ1 þ d

j
i�1

� �

�
x21j _x

2
1jk

2

x2
1jh

2
e

j
iþ1 � 2e

j
i þ e

j
i�1

� �
þ

x1jðx1j €x1j � 2 _x2
1jÞk

2

2x2
1jh

e
j
iþ1 � e

j
i�1

� �

þ k2e
j
i
_f
2

j �
a2k2

x4
1jh

4
e

j
iþ2 � 4e

j
iþ1 þ 6e

j
i � 4e

j
i�1 þ e

j
i�2

� �
, ð30Þ

d
jþ1
i ¼ e

j
i. (31)

For practical use and simplicity, the higher-order terms, the third to sixth terms of the right-hand side of
Eq. (30), are neglected, and this can be justified by numerical examples. Using finite Fourier series expansion
like Eq. (24a, b), one can derive a sufficient stability condition as

ak

x2
1jh

2
1

o0:5. (32)

One can take the following inequality as the sufficient stability condition

mv1o0:5, (33)
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where

mv1 ¼
ak

ðH � rÞ2h2
1

.

Similarly, for region 2, the sufficient stability condition is

mv2o0:5, (34)

where

mv2 ¼
ak

ðL�H þ rÞ2h2
2

.

It is sufficient to have a stable finite difference scheme for the variable-grid method if one chooses space and
time increments, h1, h2 and k, to satisfy Eqs. (33) and (34) simultaneously.

5. Numerical results and dicussion

In the numerical results, we investigate two examples of the flexible quick-return mechanisms, which have
the same material properties and dimensions as in Fung and Chen [12] and Fung and Lee [10]. The first
example has the following dimensions and properties: L ¼ 1m, H ¼ 0.59997m, r/H ¼ 0.01, D ¼ 1.2m,
E ¼ 0:7� 1011 N=m2, I ¼ 0:5208� 10�6 m4, d ¼ 0:05m, rA ¼ 7:15 kg=m, mBC ¼ 8:58 kg, mC ¼ 0:5 kg. The
second example has the following dimensions and properties: L ¼ 9:3746 in:, H ¼ 4:0 in:, r ¼ 1:5 in:,
EI ¼ 2:91992� 106 lbfin2, r ¼ 0:000725 lbin�4 s2, A ¼ 0:4531 in:2. The former belongs to the small crank of
the quick-return mechanism while the later is the large crank.

5.1. The small crank case

The transverse deformations at the end point (x ¼ L) of the rod, shown in Figs. 5 and 6, are obtained by
applying the fixed-grid method and the variable-grid method, respectively, by taking mBC ¼ mC ¼ 0, i.e. the
rigid link BC and slider C are not considered.

From the geometry constraint equation (29), it is obtained that the moving boundary moves across at least
one of the neighboring nodes when the subdivision number is one of Nf ¼ 5, 10, 15, 20, 25,30, 37, 38, 40, 42,
43, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 63, 65, and Nf X67. This means that for this case the above values
of Nf cannot be used in the finite difference scheme for the fixed-grid method since a numerical divergence is
expected to occur. This is the main shortcoming for the fixed-grid method. Fig. 5a shows that the transverse
displacements converge for larger values of Nf at time step k ¼ 5� 10�6 s. From Table 1, it is reasonable to
have the stable and convergent results since all satisfy the stability condition mfo0.5 shown in Eq. (28) for
Nf ¼ 12, 24, and 36. From Table 1, as the case with time step k ¼ 2� 10�6 s, the stability condition mfo0.5 is
satisfied for Nf ¼ 12, 36, and 59, so the results shown in Fig. 5b are all stable and convergent. Comparison of
Figs. 5a with b, it is seen that the numerical errors depend on the space step number Nf, and a larger value of
Nf induces a less error. For a smaller time step, a larger value of Nf can be taken under the stability and
geometry constraints.

Fig. 5c shows the divergent results when the value of Nf violates the geometry constraint, say Nf ¼ 10 and 37
in this figure, in spite of the value of the time step. From Table 1, though mf ¼ 0.4888 for Nf ¼ 37 satisfies the
stability condition (28), numerical results are divergent since it violates the geometry constraint (29). Fig. 5d
shows the divergent results due to the violation of the stability condition (28), from Table 1, say mf ¼ 0.5155
for k ¼ 5� 10�6 s and Nf ¼ 38, and mf ¼ 0.5141 for k ¼ 2� 10�6 s and Nf ¼ 60. It is seen from the
comparison of Figs. 5c with d that the numerical results for the cases violating the stability condition (28)
diverge far faster than those of violating the geometry condition (29). The transverse displacement for k ¼

2� 10�6 s and Nf ¼ 60 diverges faster than the other cases shown in Fig. 5c and d since it violates the stability
condition and geometry condition simultaneously.

The transverse displacements at the end point, shown in Fig. 6, are obtained by using the variable-grid
method. At k ¼ 5� 10�6 s, mv1o0.5 and mv2o0.5 for n ¼ m ¼ 3, 6, 14, and n ¼ 22 and m ¼ 14, so that the
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Fig. 5. Transverse deformations at the end point ðx ¼ LÞ with mBC ¼ mC ¼ 0 and _y ¼ 100 rad=s by using the fixed-grid method.
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numerical results of Fig. 6a are all stable and convergent. It is similar for k ¼ 2� 10�6 s, and the stable results
are shown in Fig. 6b. Comparing of Figs. 6a with b, it is seen that the case for a smaller time step can be
accompanied with a larger space step number. And a larger space step number brings about a less error.

From Table 2, it is obvious to see that the results shown in Fig. 6c are all unstable because any or all of the
values of mv1 and mv2 exceed 0.5. Similarly, the results shown in Fig. 6d are also unstable with any or all of the
values of mv1 and mv2 shown in Table 2 exceeding 0.5. It is also interesting to find that the stable cases for the
fixed- and variable-grid methods have almost the same limit of the total subdivision number, Nf and Nv where
Nv ¼ nþm.

The comparison of the CPU time required solving the examples using the FDM with the comparable FEM
is also investigated. As shown in Fig. 5a, the consumed CPU time to obtain the convergent curve by using the
fixed-grid with k ¼ 5� 10�6 s and Nf ¼ 36 is 41 s, whereas, for the variable-grid, from Fig. 6a, we see the
convergent curve with k ¼ 5� 10�6 s and n ¼ m ¼ 14 is solved by consuming 406 s. The FEM is also applied
to solve the dynamic response of such mechanism for comparing the CPU time with the FDM. For the same
case, the CPU time consumed to obtain the convergent result by using six elements and time step 5� 10�5 s is
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Table 1

The stability conditions for various k and Nf by using the fixed-grid method

k Nf mf (Eq. (28)) Geometry constraint (Eq. (29)) Stable or unstable

5� 10�6 s 12 0.0514 Satisfy Stable

24 0.2056 Satisfy Stable

36 0.4627 Satisfy Stable

10 0.0357 Violate Unstable

37 0.4888 Violate Unstable

38 0.5155 Violate Unstable

2� 10�6 s 12 0.0206 Satisfy Stable

36 0.1851 Satisfy Stable

59 0.4971 Satisfy Stable

10 0.0143 Violate Unstable

60 0.5141 Violate Unstable
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Fig. 6. Transverse deformations at the end point ðx ¼ LÞ with mBC ¼ mC ¼ 0 and _y ¼ 100 rad=s by using the variable-grid method.
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Table 2

The stability conditions for various k, n, and m by using the variable-grid method

K N m mv1 (Eq. (33)) mv2 (Eq. (34)) Stable or unstable

5� 10�6 s 3 3 0.0091 0.0207 Stable

6 6 0.0364 0.0828 Stable

14 14 0.1983 0.4507 Stable

22 14 0.4898 0.4507 Stable

23 3 0.5353 0.0207 Unstable

3 15 0.0091 0.5174 Unstable

23 15 0.5353 0.5174 Unstable

2� 10�6 s 3 3 0.0036 0.0083 Stable

6 6 0.0146 0.0331 Stable

23 23 0.2141 0.4866 Stable

35 23 0.4959 0.4866 Stable

36 3 0.5246 0.0083 Unstable

3 24 0.0036 0.5298 Unstable

36 24 0.5246 0.5298 Unstable
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569 s. It is noted that the CPU time required using FDM is less than the FEM to obtain the convergent result.
Especially, the fixed-grid method saves much more CPU time.

Figs. 7 and 8 compare the responses via the fixed- and variable-grid methods for the flexible quick-return
mechanism considering the rigid link BC and slider C. It is seen from Figs. 7a and 8a that the convergent results
via the fixed- and variable-grid methods are almost the same. Figs. 7b and 8b show the unstable deformations.
The stability conditions for the case with and without considering the rigid link BC and slider C are all the same
by comparing the results shown in Figs. 5–8. This means the stability conditions are irrelevant to boundary
conditions for the studied mechanism. The transverse displacements for the mechanism while considering the
rigid link BC and slider C are much larger than those without considering the rigid link BC and slider C.

5.2. The large crank case

The large crank problem differs from the small ones not only by the crank length, but also by the stiffness of
the flexible rod. As the crank length increases, the steady-state responses increase [10]. The fixed-grid method
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fails for the large crank because the insurmountable numerical difficulties arise when a grid point comes close
to the translating/rotating joint. The large crank has longer computation time required to run one cycle of the
crank rotation compared to that of small crank.

The transverse deflection of the large crank is shown in Fig. 9. At time step k ¼ 2� 10�6 s, for satisfying the
stability conditions, the largest n is 4 and m is 6. Since the limits of the space subdivision numbers are too small
to get more accurate solutions, a finer time step is necessary to obtain better results, say k ¼ 2� 10�7 s. The
limits of the space step number are n ¼ 12 and m ¼ 19 for k ¼ 2� 10�7 s. It is seen that there are high-
frequency oscillations in the numerical results, and the transverse deformations are larger than those of the
small crank case shown in Fig. 5. To gain an insight into the frequency response clearly, the time histories for
first five consecutive cycles of Figs. 5 and 9 are transformed to frequency spectra by using the FFT, and the
frequency spectra for the cases of the small crank and the large crank are shown in Figs. 10 and 11,
respectively. It is seen from Fig. 10 that the transverse frequency responses have one significant peak and one
small peak occurring near the harmonic and periodic-ten of angular speed of the crank, respectively. However,



ARTICLE IN PRESS

0 5 10 15 20

0

Frequency (×100rad/s)

0.0001

V
 (

m
)

8E-05

6E-05

4E-05

2E-05

Fig. 10. The FFT spectra of transverse deformations at the end point ðx ¼ LÞ with mBC ¼ mC ¼ 0 and _y ¼ 100 rad=s for the small crank.

V
 (

m
)

0 50 100 150 200

0

0.0006

Frequency (×90rad/s)

0.0008

0.0004

0.0002

Fig. 11. The FFT spectra of transverse deformations at the end point ðx ¼ LÞ with mBC ¼ mC ¼ 0 and _y ¼ 90 rad=s for the large crank.

J.-L. Ha et al. / Journal of Sound and Vibration 297 (2006) 365–381 379
for the large crank case as shown in Fig. 11, it is obvious to find the multiple peaks in the FFT spectra, the
predominant peaks are located with angular speeds of the crank having periods 1 and 2 with the amplitude
about 0.0007m. The high-frequency peaks are integer multiples of the harmonic frequency, ranging from near
60 to near 140 times the angular speed of the crank with the largest amplitude about 0.0003m. In the case
studies, it is seen that the oscillation phenomena is much significant for the quick-return mechanism with the
large crank. It is may be explained that the rigid-body motion and flexural vibration are severely coupled for
the quick-return mechanism with the larger crank.

6. Discussion

From the FDM formulation and numerical simulations, the following observations are made:
(i)
 The loss of accuracy associated with singularities can arise when the moving boundary is too near a grid
point. Some grid numbers, even though satisfying the stability condition, violate the geometry constraint
due to the moving boundary. This is the major shortcoming of the finite difference scheme using the fixed
grid.
(ii)
 In the variable-grid method, the speed and acceleration of the moving boundary introduced in the
transformed equations reduce the storage and memory size requirements. The variable-grid method costs
more computation time than the fixed-grid method.
(iii)
 In the fixed-grid method, the dynamic responses of the fixed nodal location obtained directly at any time
provide an attractive feature for the control applications where point-sensor and point-actuators need to
be placed at specified nodal points. However, it is difficult to find the transient results of the original node
in the variable-grid method due to the coordinate transformation, which makes the node varying as the
time increases.
(iv)
 Since the grids of two regions are in agreement, the fixed-grid method avoids the numerical difficulties
associated with the continuity conditions at the moving boundary.
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7. Conclusion
The flexible rod of a quick-return mechanism is modelled by Euler-beam theory. The calculus of variation and
Hamilton’s principle are used to derive the governing equations and boundary conditions. Due to the translating/
rotating joint moving reciprocally along the flexible rod, the special FDMs with the fixed- and variable-grid
schemes are proposed to approximate the numerical solutions. However, it is noticeable that numerical
divergence occurs when the moving boundary moves across any of the neighboring nodes. Thus, the fixed-grid
method is not applicable for the mechanism with the large crank. The possibility of singularities can be avoided
via the variable-grid method, in which a coordinate transformation is employed to fix the moving boundary.

For a given time step, taking more space intervals can reduce the more numerical errors. To satisfy the
stability and convergence conditions for the finite difference schemes, the number of space subdivision has an
upper bound. Decreasing the time step can raise the upper bound of the number of space interval, however,
leads to much computer time consumption.

It is impossible to find a method in which all the criteria are fulfilled. The choice of the numerical scheme
depends not only on the nature of the problem but also on the priorities set by the user for accuracy,
computation cost and ease of programming. As far as the above viewpoints are concerned, the following
conclusions are drawn:
(i)
 The advantage of the FDMs employed in the quick-return mechanism is that it simplifies the process of
the formulation and programming and conserves the accuracy of the solutions.
(ii)
 Galerkin’s approach is too computationally intensive due to the time-dependent boundary and its
complex mode shape.
(iii)
 Finite element techniques are time consuming and less amenable to vectorization than the FDMs, which
continue to be widely used due to their simplicity in formulation and ease of programming.
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Appendix A

By applying the FDM and Lagrange interpolation to the governing equations (12a, b), one can obtain v
jþ1
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and v
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from the following two equations, respectively:

v
jþ1
ir�1
¼ 2v

j
ir�1
� v

j�1
ir�1
� k2xir�1

€fj þ k2v
j
ir�1

_f
2

j

�
12EIk2

rAh4

v
j
ir�3

3ðpj þ 3Þ
�

v
j
ir�2

pj þ 2
þ

v
j
ir�1

pj þ 1
�

v
j
ir

3pj

 !
, ðA:1Þ

v
jþ1
irþ2
¼ 2v

j
irþ2
� v

j�1
irþ2
� k2xirþ2

€fj þ k2v
j
irþ2

_f
2

j

�
12EIk2

rAh4
v

j
irþ1

3ðpj � 1Þ
þ

v
j
irþ2

2� pj

þ
v

j
irþ3

pj � 3
þ

v
j
irþ4

3ð4� pjÞ

 !
. ðA:2Þ

Concerning the boundary conditions (13c–f), the transverse displacements v
j
ir�1

and v
j
ir
can be found by

solving the following equations simultaneously.
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Appendix B

In region 1, 0pxpx�1 ðtÞ, the coordinate transformation (18) fixes the moving boundary at x1 ¼ 1 for all
time and the governing equation (12a) becomes

€v1 �
2x1 _x1
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x21 _x

2
1

x2
1
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€f� _f

2
v1 þ

EI

rAx4
1

v00001 ¼ 0. (B.1)

In region 2, xþ1 ðtÞpxpL, the coordinate transformation (19) fixes the moving boundary at x2 ¼ 0 for all
time and Eq. (12b) becomes
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